THE JOHNS HOPKINS UNIVERSITY Sub-Lexical and Contextual Modeling of Out-of-Vocabulary Words in Speech Recognition
نویسندگان
چکیده
Large vocabulary speech recognition systems fail to recognize words beyond their vocabulary, many of which are information rich terms, like named entities or foreign words. Hybrid word/sub-word systems solve this problem by adding sub-word units to large vocabulary word based systems; new words can then be represented by combinations of subword units. We present a novel probabilistic model to learn the sub-word lexicon optimized for a given task. We consider the task of Out Of vocabulary (OOV) word detection, which relies on output from a hybrid system. We combine the proposed hybrid system with confidence based metrics to improve OOV detection performance. Previous work address OOV detection as a binary classification task, where each region is independently classified using local information. We propose to treat OOV detection as a sequence labeling problem, and we show that 1) jointly predicting out-of-vocabulary regions, 2) including contextual information from each region, and 3) learning sub-lexical units optimized for this task, leads to substantial improvements with respect to state-of-the-art on an English Broadcast News and MIT Lectures task.
منابع مشابه
Recognition of out-of-vocabulary words with sub-lexical language models
A major source of recognition errors, out-of-vocabulary (OOV) words are also semantically important; recognizing them is, therefore, crucial for understanding. Success, so far, has been modest, even on very constrained tasks. In this paper we present a new approach to unlimited vocabulary speech recognition based on using graphemeto-phoneme correspondences for sub-lexical modeling of OOV words,...
متن کاملSpoken Term Detection for Persian News of Islamic Republic of Iran Broadcasting
Islamic Republic of Iran Broadcasting (IRIB) as one of the biggest broadcasting organizations, produces thousands of hours of media content daily. Accordingly, the IRIBchr('39')s archive is one of the richest archives in Iran containing a huge amount of multimedia data. Monitoring this massive volume of data, and brows and retrieval of this archive is one of the key issues for this broadcasting...
متن کاملTowards a unified framework for sub-lexical and supra-lexical linguistic modeling
Conversational interfaces have received much attention as a promising natural communication channel between humans and computers. A typical conversational interface consists of three major systems: speech understanding, dialog management and spoken language generation. In such a conversational interface, speech recognition as the front-end of speech understanding remains to be one of the fundam...
متن کاملTowards a Unified Framework
Conversational interfaces have received much attention as a promising natural communication channel between humans and computers. A typical conversational interface consists of three major systems: speech understanding, dialog management and spoken language generation. In such a conversational interface, speech recognition as the front-end of speech understanding remains to be one of the fundam...
متن کاملHybrid Language Models Using Mixed Types of Sub-Lexical Units for Open Vocabulary German LVCSR
German is a highly inflected language with a large number of words derived from the same root. It makes use of a high degree of word compounding leading to high Out-of-vocabulary (OOV) rates, and Language Model (LM) perplexities. For such languages the use of sub-lexical units for Large Vocabulary Continuous Speech Recognition (LVCSR) becomes a natural choice. In this paper, we investigate the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013